The Code of Federal Regulations Title 21, Part 210 is dry reading, but it’s necessary for the cannabis industry to digest. Understanding these regulations, despite their dry nature, is the job of the Quality Assurance unit. In fact, it’s optimal that everyone involved in cGMPs is very aware and familiar with this documentation.

For the sake of this writing, my aim is to inform quality assurance (QA) and quality control (QC) personnel of what they need to know. This is a good place to start. You must understand the following definitions in order to read further into the literature of Good Manufacturing Practices.

Code of Federal Regulations Title 21, Part 210 – Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs

The 21 CFR 210 and 211 only describe the minimum current good manufacturing practices.

The 21 CFR describes the minimum methods, facilities, and controls that need to be in place for manufacturing, processing, packing, and/or holding any drug product. The main goal is to make sure that drugs are manufactured to the specifications they claim to have – it ensures:

  • Safety
  • Identity and strength
  • Quality and purity characteristics

As usual, there’s a consequence for not following the rules, which can be very costly. If it’s found that a company manufacturing under cGMPs is not complying with the 21 CFR, they may:

  • Determine the drug is adulterated
  • Hold the person responsible who was in charge of the process

When your company is found to be violating the 21 CFR, you might get a publicly published 483 warning letter that will say something along the lines of:

“You should take prompt action to correct the violations cited in this letter. Failure to promptly correct these violations may result in legal action without further notice, including, without limitation, seizure and injunction.”

Right now, cGMPs for the cannabis industry are in their infancy. When the FDA is regulating the industry, it will be a different story.

Definitions

When you fully understand these terms, you will have a much easier time understanding the 21 CFR part 211. It’s the baseline of information that sets the stage for everything that’s to come. Take warning though – these are complicated definitions, and often require a background in chemistry or the sciences to fully understand.

Some definitions will be followed by an explanation tying it into terms related to the cannabis industry, as necessary.

Batch – a specific quantity of a drug or other material that is intended to have uniform character and quality, within specified limits, and is produced according to a single manufacturing order during the same cycle of manufacture.

This could be a batch of plants that finished their flowering period at the same time, and were harvested at the same time. Alternatively, it could be the finished extract that was produced by one cycle of a CO2 or hydrocarbon extraction system.

Component – any ingredient intended for use in the manufacture of a drug product, including those that may not appear in the final drug product.

This could be the CO2 or butane used in an extraction.

Drug Producta finished dosage form, for example, tablet, capsule, solution, etc., that contains an active drug ingredient generally, but not necessarily, in association with inactive ingredients. The term also includes a finished dosage form that does not contain an active ingredient but is intended to be used as a placebo.

This could be flowers that have been fully processed to their dried and cured form, ready for use. It could also be an extract that has been fully purged, packaged, and labeled, ready for use.

Fiber any particulate contaminant with a length at least 3X greater than its width.

Nonfiber releasing filterany filter, which after appropriate pretreatment such as washing or flushing, will not release fibers into the component or drug product that is being filtered.

Active ingredient – any component that is intended to furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or to affect the structure or any function of the body of man or other animals. The term includes those components that may undergo chemical change in the manufacture of the drug product and be present in the drug product in a modified form intended to furnish the specified activity or effect.

In the case of cannabis, this would be all the cannabinoids that are present in the final product. Cannabis is tricky in that its final forms are usually a mixture of cannabinoids, and not pure product. All together, the mixture of cannabinoids can be considered the active ingredient.

Inactive ingredient – any component other than an active ingredient.

In the case of cannabis flowers, it would be everything but for the cannabinoids. In the case of an extract, there can be waxes and other lipids that are present with the active ingredient.

In-process material any material fabricated, compounded, blended, or derived by chemical reaction that is produced for, and used in, the preparation of the drug product.

In general, there are purification steps involved in producing cannabis products, and relatively few chemical reactions.

Lota batch, or a specific identified portion of a batch, having uniform character and quality within specified limits; or, in the case of a drug product produced by continuous process, it is a specific identified amount produced in a unit of time or quantity in a manner that assures its having uniform character and quality within specified limits.

Similar to a batch, but is the result of a continuous process. Therefore, a lot would be the packaged components from, for example, 100 bottles filled with cannabis tinctures. The tinctures would be filled in a continuous process and all 100 would be filled in a specific identified amount of time or quantity.

Lot number, control number, or batch number any distinctive combination of letters, numbers, or symbols, or any combination of them, from which the complete history of the manufacture, processing, packing, holding, and distribution of a batch or lot of drug product or other material can be determined.

This is the identifying number of a lot or batch. It’s a locally produced number that’s used to track all activity that was associated with manufacturing a drug substance.

Manufacture, processing, packing, or holding of a drug product includes packaging, labeling operations, testing, and quality control of drug products.

Quality control unit – any person or organizational element designated by the firm to be responsible for the duties relating to quality control.

Strength

  1. The concentration of the drug substance (e.g. weight/weight, weight/volume, or the unit dose/volume basis).
  2. The potency, i.e., the therapeutic activity of the drug product as indicated by appropriate laboratory tests or by adequately developed and controlled clinical data (e.g. expressed in terms of units by reference to a standard).

Theoretical yield the quantity that would be produced at any appropriate phase of manufacture, processing, or packing of a particular drug product, based upon the quantity of components to be used, in the absence of any loss or error in actual production.

Actual yieldthe quantity that is actually produced at any appropriate phase of manufacture, processing, or packing of a particular drug product.

Percentage of theoretical yield – the ratio of the actual yield (at any appropriate phase of manufacture, processing, or packing of a particular drug product) to the theoretical yield (at the same phase), stated as a percentage.

Acceptance criteriathe product specifications and acceptance/rejection criteria, such as acceptable quality level and unacceptable quality level, with an associated sampling plan, that are necessary for making a decision to accept or reject a lot or batch (or any other convenient subgroups of manufactured units).

Representative sample – a sample that consists of a number of units that are drawn based on rational criteria such as random sampling and intended to assure that the sample accurately portrays the material being sampled.

 

If you have more questions, check out www.oriongmp.com and get a free consultation on putting together your Cannabis related Good Manufacturing Practices and Quality Manufacturing Systems.

It’s always a pleasure when I get an email from someone asking how to break into the industry. I can appreciate the feeling – I was once there. I had hustle, and always worked hard, but I didn’t have a clear vision of the end game.

Ultimately, building yourself up in any industry requires experience. You dig into the work and make a name for yourself. There are many ways to get there, but it’s usually a nonlinear process.

I got my start in the industry in an unlikely place – as a Sergeant in the Marine Corps. I realized during my last tour in Iraq that the cannabis industry was in my future. I had my own personal reasons that drove me towards it, but I saw things lining up. I was honorably discharged in 2006, and I immediately got to work on my education in both cannabis and chemistry.

I hadn’t taken a math class in 5 years, and I had no real background in the sciences. Despite that, I started from the bottom and worked my way through all the liberal arts, math, chemistry, and biology courses. I hustled, and my work paid off with the rewards of leading chemistry study groups – I found that teaching is one of the most rewarding things I can do.

I attended the University of Michigan where I studied Biochemistry and spent my free time learning about the physiology of the endocannabinoid system. I wanted to learn everything about how cannabinoids affect the body and their therapeutic potential. I graduated with my B.S. in 2011 and tasted the accomplishment of my hard work. I planned on going through to a PhD program in Biomedical Sciences, but I first wanted to solid foundation in scientific research before jumping into it.

That’s where some luck comes into play. I landed a job in a biochemistry/genetics laboratory at the University of Michigan where I had the best mentors a young scientist could have. I had all the tools of the trade for HPLC, column chromatography, mass-spec, and a project that needed me to use all of them. I was a protein chemist. Every purification started with extractions, and moved on through multiple steps of column chromatography that ended with HPLC purification.

Andrew - Research day - 2014 poster - Final

I scaled up processes and thought of myself as the Henry Ford of protein purification… Perhaps it was grandiose to think that way. Nonetheless, it’s where I learned to apply the scientific method on a daily basis, and I where I got my basic understanding for extracting and purifying compounds.

I found that a career in academic science was not for me. It is a surprisingly political atmosphere, and I’m not one for bickering. I was accepted into a PhD program, but dropped out just days before the program started. I knew it wasn’t right for me, and, besides, I had an awesome job in the pharmaceutical industry as a Good Manufacturing Practices Quality Control Chemist. It was there, that I realized Good Manufacturing Practices (GMPs) are the future of the cannabis industry – I finally had my clear vision of the end game.

I always kept myself busy moonlighting in the industry while working as a chemist by day. I put the two together, and found that my best bet was to share information and help other people. HempHacker has become my means of teaching people about different aspects of the industry that aren’t fully covered elsewhere.

Since my last job as a GMP QC Chemist, I’ve been doing GMP Consulting for the Cannabis industry. It aligns all my criteria for a job that’s good for me. I’m able to travel, meet new people, help them with their projects, and do a lot of networking in the industry. It’s also very satisfying to know that my work has a positive impact on the quality of products. It’s a very rewarding job for me.

I’m happy with the way it happened, but I know that I would have different advice for someone starting out now. In my next post, I’ll give my suggestions for people getting their start in the industry. I hope it’ll help people get an advanced start.

GMP Cannabis vs. Extraction content on HempHacker

Last week I sent out a survey to subscribers on the HempHacker email list. The goal was to find what content interests readers the most. The numbers and comments speak for themselves. Overall, everyone loves actionable content, but they would also like to see more blog posts about what’s going on at HempHacker.

The people’s choice is extraction content. If the people will have it, it shall be done. However, I am looking for an experienced writer and cannabis alchemist to join the HempHacker team to write for the crowd. My time is being placed mostly on Good Manufacturing Practices (GMP) consulting lately, and I haven’t been able to focus on extraction content.

I received some very helpful constructive criticism, which I greatly appreciate. It helps me understand how I could do my job better. It’s slightly difficult to scale it for all situations since there are different variables for each system, but I understand the need for specific parameters in doing extractions. I will work to improve this.

64% want more extraction content

  • New extraction techniques on the market
    • Wiped film evaporation
    • Short path distillation
  • Specific parameters for supercritical extractions – i.e. useable parameters
    • Amounts to be extracted
    • Solvents used
    • Temperatures
    • Pressures
  • Solventless extractions
  • SFE vs BHO comparisons

36% want more GMP Cannabis related content

  • How to establish GMP systems in your facility
  • GMP Training
  • Good Documentation Practices (GDP)
  • Quality Assurance (QA) and Quality Control (QC) Practices

While I understand the majority want to see more extraction content, GMP consulting pays the bills, and is my primary focus. I really hope that the GMP Cannabis content will also be useful to people doing extractions. It is the definite future of the industry, and I would like to help everyone learn the practices before the FDA regulates the production and processing of cannabis and its extracts.

Thank you to everyone who participated in the survey. Your feedback is very useful to me. As usual, you have an open line of communication to me at andrew@hemphacker.com.

-Andrew

Compliance vs. Good Manufacturing Practices

Just to clarify, there is a difference between Compliance and Good Manufacturing Practices (GMPs). To put it simply, Compliance covers the laws that allow a company to manufacture cannabis and its products, while GMPs provide a framework for how you do it.

Compliance is presently defined as the state by state rules for manufacturing cannabis and cannabis products. It covers the regulations, required transparency, laws, policies, requirements, and standards for manufacturing cannabis. This sets the legal framework for how businesses in their respective states can operate.

Good Manufacturing Practices, on the other hand, are guidelines that come from the Food and Drug Administration and the International Conference on Harmonization. Both provide the requirements for a pharmaceutical manufacturing operation to produce drugs that will be ingested by human beings. They set the operational framework for how to manufacture drugs that are safe for human consumption.

There are also some similarities. Both Compliance and GMPs can have Standard Operating Procedures (SOPs). SOPs are simply the documentation of any process that a company does. They range from simple to complicated. It can be an SOP for sweeping the floors, or an SOP for a 32 step organic chemistry synthesis of tetrahydrocannabinol.

Compliance is without a doubt, the most important first step to establishing your business. Without it, you can face serious legal consequences. Establish your company with a trusted attorney who specializes in compliance, and start manufacturing with peace of mind.

GMPs are the next best step to make your business stand out above the competition – being a GMP Certified facility creates a huge differentiation in your product. With a well defined GMP system in place, you can track improvements to your product over time using the scientific method, ensure consumer safety, and have fully traceable processes. Overall, it’s a win-win adaptation to your business because you improve your processes (and chances to be bought out) and you improve product safety and quality for the consumer (sell more product).

If you have more questions, check out www.oriongmp.com and get a free consultation on putting together your Cannabis related Good Manufacturing Practices and Quality Manufacturing Systems.